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SOLUTION OF A MINIMUM PROBLEM IN AIRCRAFT WING THEORY

Karl Nickel in Tibingen

ABSTRACT

The third fundamental problem of Prandtl's theory

of the supporting line is extended to the case of a

finite number of linear supplementary conditions, and

solved. Three examples demonstrate cases which occur

in practice, with such supplementary conditions.

1. Formulation of the problem

In wing theory I of the "Four Essays " l), L. Prandtl states the

following minimum problem as the "Third Fundamental Problem" (op.

cit., p. 28):

"Given is the total lift and the wing span, also p and V; to be

found is that distribution of the lift over the wing span for which

the drab becomes a minimum".

With the aid of the given formulas (op. cit., p. 27), the

mathematical formulation of this problem reads as follows in a coor-

dinate system in which the wing extends from -1 to +1:

Let ir i

und Aerodynamik

i) Prandtl, L., and Betz., A. Vier Abhandlungen zur Hydrodynamik
Neudruck aus den Verhandlungen des III. Internationalen Mathem-
atiker-Kongresses zu Heidelberg und aus den Nachrichten der
Gesellschaft der Wissenschaften zu Goettingen. ("Four Essays
on Hydrodynamics and Aerodynamics. Reprint from the Proceedings
of the Third International Congress of Mathematicians at Heidelberg
and from the Communications of the Society of Sciences at
Goettingen"). Goettingen, 1927.

2) The sign f is to be understood as the Cauchy principal value of

the integral.
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and F(-i)=r(+i)=o [where r(x) is the local lift density and
w(x) the induced downwash velocity at position x on the wing]. Let

the function r(x) on the interval <-I. +1)be determined such that

Ir() W(.) d (2

becomes a minimum under the supplementary condition

_ (3)

(A = the total lift, arbitrarily prescribed).

This formulation of the problem was extended by M. Munk 3 ) to

the case of arbitrarily distributed and directed lift, and solved

in general.

One can also generalize the above minimum problem in another

way, by prescribing, instead of the supplementary condition (3),

other--and if necessary several--supplementary conditions. Three

examples will illustrate this more exactly:

a) A flying wing is to be made into a (shallow) curve by a

(small) aileron deflection. What form must be taken by the lift

distribution which is added to the symmetric distribution by the

aileron deflection in order that the increase in the induced drag

stays as small as possible? If one knows this distribution, one can

approximate it with a suitable aieleron shape, in order to prevent

superfluous losses when deflecting the ailerons. The question

here therefore reads: The lift distribution is sought which makes

the induced drag (2) a minimum, when the roll torque

is to have a prescribed value. The use of equation (1) is in this

case exactly correct only in the first instant of aileron deflection,

so long as there is no yawing or rolling motion, because only then

the departing vortex lines are rectilinear. At any rate, for small 73

3)Munk, M. Isoperimetrische Aufgaben aus der Theorie des Fluges.
Inaugural-Dissertation. ("Isoperimetric Problems from the
Theory of Flight. Inaugural Dissertation"). Goettingen, 1919.

2



yaw and roll velocities one can still use the solution of the for-

mulated problem as an approximation.

A second problem, which leads to the same (mathematical) prob-

lem, and in which these difficulties do not arise, was kindly commu-

nicated to me by Dr. Prandtl. This is the question of the lift

distribution with minimum drag, for a wing with an eccentrically

applied load, which creates a roll torque (4).

b) The solution of the third fundamental problem stated by

Prandtl reads (ref. 1, page 32) in the formulation given above:

T(x) = -tif

that is, the lift is distributed over the wing span in the form of

a half ellipse (see the solid line in Figure 1). If one now modi-

fies r(x) somewhat, in the manner shown by the dashed line, letting

A in (3) keep its value, the induced drag (in the vicinity of its

minimum) will change only slightly. The spar-bending torque at the

wing root

I zz ds,

which can be replaced by

j(z) IxI'Z (-)

for symmetric lift distributions (apart from a factor of 1/2), will

however become smaller.

For a free-flying wing, this means the following: in conse-

quence of the reduced stress, the wing can be built lighter in

weight. Because, however, in constant horizontal flight the lift

and the weight are equal, this means that the total lift A in (3)

also becomes smaller.

If r(x) is replaced by X-P(x), the lift (3) and spar-bending

torque (5) change in proportion to X, while the induced drag is pro-

portional to X2 . One would expect, therefore, somewhat more favor-

able drag conditions with a lift distribution which has somewhat

3



4 °I

Figure 1 Figure 2

smaller values at the wing tips, than with the elliptical lift dis-

tribution. At any rate, it must be noted that the dependence of

the flying weight on the spar bending torque is very small for

the usual wing construction methods, so that the effect described

above is small.

This consideration leads to the following formulation of the

problem: The induced drag (2) is to be made a minimum under the

two supplementary conditions, that the lift (3) and the spar bending

moment (5) possess prescribed values.

c) If one considers a wing which is curved in the direction

of flight (see Figure 2), the longitudinal torque would also have

to be held constant, in addition to the total lift, in solving the

third fundamental problem of wing theory 4 ) for this case. One can

now require that the constancy of the longitudinal torque should

result exclusively from lifting forces on the wing (longitudinal

stabilization through wing warping, such as in bird-flight). Let

h(x) be the distance of the central line of pressure (dashed in

Figure 2) from the x-axis. Then this requirement means that

F(S) A(S)dsm ( - i

4)It is true (see reference 1, page 25) that the idea of the sup-
porting line can no longer be used in this case; however, as M.
Munk has shown (reference 3, page 21), in considering the drag it
suffices to consider only the two-dimensional problem of a wing
which is not curved in the direction of flight. F(x) here is
thus the projection of the lift onto a plane normal to the
direction of flight.
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(longitudinal torque M prescribed) and the problem above reads:

The lift distribution r(x) is sought, for which (2) becomes a min-

imum under the two supplementary conditions (3) and (6). It might

be remarked here that in the general case of an arbitrarily shaped

wing the central line of pressure will not be the line of the for- 74

ward neutral point in the two-dimensional problem (T/4 line). The

task of determining this line for an arbitrarily prescribed wing

poses great difficulties which, to my knowledge, have not yet been

solved. As an approximation, one can nevertheless replace the cen-

tral line of pressure by the T/4 line, so long as the wing does riot

deviate too much from a straight wing.

On the basis of these examples, it is now natural to extend

the minimum problem formulated above in such a way that finitely

many supplementary conditions, linear in r(x), are prescribed. One

seeks therefore to determine P(x) in the interval (-I, +I> such that

Jr(a)-(z) d ()

becomes a minimum, under the N supplementary conditions

r(s)A.=z a1 .... N) (7)

[r(-l)=r(+I).O; k(x) and An arbitrarily prescribed, except that for

h m(x) = 0 naturally only Am = 0 is allowed]. For N=1; k(z) m1, A,=A
the problem formulated by Prandtl results as a special case; like-

wise the examples a), b) and c) can be obtained through analogous

specialization.

2. Transformation of the problem

For the mathematical treatment of the problem, let the follow-

ing transformations be undertaken:

One sets

u--mII, lIma.

-(S) rT- f(() Z(S)
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and uses the notation A(z '-zkA(.)(_-1,.... . Then 5 ) from

(1), (2) (neglecting a factor of 1/4) and (7):

- a Id . sm-o.." O I( c i-e t .. ............ (la),XlJ JS 7Cos f-Coss
0

iz() P.( ) d .= . . : .- 2)
.............. ................... (7a).

For known f(s), (la) is a Fredholm integral equation of the first

kind for dZ(t)/dt. As is well known, its solution 6 ) is

a
dZ()!1 if~ sin U S
di z- ( cos ,-cos t

from which follows by integration

It . 0+.

if one writes for brevity

sin-

and inserts (8) in (2a) and (7a), one obtains 75

a i (I)f(t) S(a 1) as (.
and

if(#) S(sa, s dt = A.

Since the functions Z(s) and f(s) are unambiguously related to

5)The conditions under which the integrals and infinite series which
occur exist, and under which the transformations used (changing
the order of integration, exchanging integrations and summations)
are allowed, are examined in a comprehensive work, which is to
appear shortly under the title Solution of a Particular Minimum
Problem in the Mathematische Zeitschrift. In it a second class
of supplementary conditions will be added to those already consi-
dered. Note added in proof: This has meanwhile appeared in the
Mathematische Zeitschrift, vol. 53 (1950), pp. 21-52.

6)See for example Schroeder, K. An Integral Equation of the First
Kind in Wing Theory. Sitzungsberichte der Preussischen Akademie
der Wissenschaften XXX (1938).
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each other through (la) and (8), one can also consider f(s) as the

function to be sought. With this the problem to be solved reads:

f(s) is to be determined in the interval (O,x> , such that (2b)

becomes a minimum under the supplementary conditions (7b).

For further simplification of notation, let the following

further abbreviation be introduced:

yg i()ge*ut sa

With the representation 
7 )

8(a, 2) 1,".-sin fts sin as

valid for 0~~~~~ there results from (9):

(f 2) 2 ff() gQ) a, 8 ) d s d
x A j~t sn t t . .

wth he Folouigrpertsies coefficientsmber

a) (of, V) = a, g) (a =reIle Zah))
b) (I, 1) = (uf) (

0) U+g J%=-)(g,A)

d) (f,))>O ftkr f(*)z'I 0

One therefore has the task of finding a function f(s) in the

interval <O~n> such that (f,f) becomes a minimum under the N

7See for examp.f. H, ai, G. Integralgleichungen ("Integral
Equations"). iA -.rlin: J., Springer, 1937 ; or Jaeckel, K.
Determination of a Series Representation for the Kernel in r
inElpia Codnts Z. angew. Math. Mech., vol. 30
(1950) p T -T ormul-a (16).
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supplementary conditions

U. . )= -. (S =I ... )(

Thereby (f,g) is defined by (9) and has the properties (11).

3. Solution of the proble,

If the functions hn (s) are linearly dependent, then under the

supplementary conditions (12) either they are supernumerary or they

are contradictory and, therefore, cannot be satisfied at all.

Therefore, without loss of generality, one may assume the functions

h n(s) to be linearly independent.

Assumption: Let the functions hn (s) be linearly independent,

and let the real numbers A n(n = 1,..., N) be arbitrarily chosen.

Proposition: Then there is exactly one solution f'(s) to the

above minimum problem and this solution has the form

with unambiguously determined real numbers an

Proof: According to the orthonormalization procedure of E. 76

Schmidt, one can find functions

H.(s) = c. A.(s) (6. + 0; a= 1, ... , N)
M- I

such that

for m=*
(Hrt.)=eis 0 for m +

Inverting these equations gives the representation
S0" - ,1.B..0; 1 ... N).

rn-1

One now sets

M
f,(a) 2 H,.()

-1I

with real coefficients cn whic._ are as yet undetermined and with

the calculation rules (11) obtains

8



V y *

(".,)-E c.(H., h,)= c. E ,.,(H., H.)

ford V Ol an, N.
u-I rn-I s-

If now d,-, (r= ,. ) , the c are thereby unambiguously

determined in a recursive fashion. With the real numbers c thusn

chosen, f' then satisfies the supplementary conditions (12), and

further receives the desired form
N N a X I P-/'(s) = X q. H. (8) = ' c. Z a.. k,(8) X . (8) X cis 46. - k , ', (8).

r.,,i r,-i s-i *-I u~ -I

It still remains to show that f' also minimizes (f,f). An

arbitrary function f(s) can always be written in the form

f(s) = f'(s) + k(s) (namely with k(s) = f(s) - f'(s)).

Thus

(, A.) + k, A.) A) + (k, A = An + (k, A) ( .... ).
f(s), therefore, satisfies the supplementary conditions (12) exactly

when (k,h n ) = 0 for n = 1,...,N.

For all the functions f(s) which satisfy the supplementary con-

ditions (12), the following holds, according to the rules (11):

(U) = (f' + k, f'+ k) = (fr.!)+ 2 (fo, k) + (k, k)
-= (tf. f") + 2 E ,,. (h,., k) + (k, k)

0-1
=(JD,')-'- (k, k) :(f',f'),

whereby the equality sign comes into play only for k(s) = 0. The

unambiguity of the coefficients an follows with (lid) for the linear

independence of the functions hn (s). Thus, the proposition is proven.

If one reverses the transformations introduced above, one finds

the following result:

4. Result

Let the functions h (x) and the real numbers A (n = 1,...,N)

be arbitrarily chosen. The function F(x) in -I -. I is to be

determined such that (-I)=F(+-)=oi@L and such that by setting

9



- s -I /

the expression

f (S) W (Z)d I2)

becomes a minimum under the supplementary conditions

If a function r(x) exists at all, which satisfies the N supple-

mentary conditions (7), then this minimum problem has exactly one

solution, which has the form

with real coefficients a If the functions hn (x) are linearly

independent, then the minimum problem always has a solution and the

coefficients a are unambiguously determined.n

5. Application

In the following table are the associated functions h(x)

10



Function f A(y)ogX_V+ ( -2) (1 y

4-11 *

1 (:) 
A (Y) log

i . (2 =,+ I) i1 -:

I I >o 2 + --

I-ti < 2:° -Iz
1 A (y logog -1 --

, Iz : lgI1 + :C V

a',~~~ ffls:z F-)= .ye
jfl'( (I,-S + 1)

12 z (2 z + 1)-
II 2< l (e_ log l + ztl- l) 1- )

to -1 < X< AO 2)lg-s X I I -- Z; arc Cos Z

With these, one finds the solutions for the first two cofth

examples stated previously:

X)1X



In Figure 3 is displayed this solution for example a). Figure

4 shcas some curves from the family of solutions for example b)

for A = constant, H variable (among these is contained for 37H =

4A the half-ellipse as a special case).

ra

Figure 3 Figure 4

Submitted on January 28, 1950.
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